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Travelling wave solutions to the two-dimensional 
Kdv-Burgers equation 
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Mathematics Department, Lanzhou University, Lanzhou, People’s Republic of China, 
730000 

Received 26 May 1993, in final form 14 July 1993 

Abstract. Travelling wave solutions lor the two-dimensional Kdv-Burgers equation are 
obtained by using Mafhemlica. They are shown to be sums of a shock wave and solitary 
wave. 

The KdV-BUrgerS equation is a nonlinear partid differential equation which arise in the 
study of many physical problems [1,2]. Recently it has received much attention 
[3-51. In this paper, we use a computer algebra system to search for appropriate exact 
solutions to the ZD KdV-BWgerS equation. Travelling wave solutions are obtained. We 
prove that the solutions can be expressed as a sum of shock wave solutions of a ZD 
Burgers equation and solitary wave solutions of a ZD Kdv equation. At the time of 
writing the authors have not seen two-dimensional results like these in the literature. 
Although Barrera and Brugarino [6] discussed the similarity solutions of the ZD Kdv- 
Burgers equation using Lie group analysis and examined some features of these invari- 
ant solutions, they could not obtain the exact travelling wave solution. 

We attempt to h d  the exact solution to the ZD Kdv-Burgers equation of the follow- 
ing form: 

(u,+uu,-mu,,+nu,,),+su,,=O (1) 

where U =  u(x, y. t )  is a function of x ,  y and I, coefficients m, n and s are real constants. 
Equation (1) is an extension of the KdV-Burgers equation for the two-dimensional case 
just as in the relationship between the Kdv equation and the KP equation. 

Murakami [7] showed that the Hopf-Cole transformation 

U= [loglf)lz (2) 

can reduce the ZD Burgers equation 

u,x - - U,,, + suyy = 0 (3) 

to the bilinear form: 

f J - f f x  - l f = x f - f x J )  + sG,f-LL) = 0. (4) 
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Substitution of the following form: 
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f=  1 +exp(z) (SQ) 

r =kx + ly - wl +zo (W 
into (4) gives the travelling wave solution of (3) as follows: 

~ = k / 2 +  (k/2) tanh((kx+l~-wr+zo)/2) (6) 

where k, 1 (the wavenumbers in the x and y direction, respectively) and zo are arbitrary 
real constants. The parameter w (the frequency) is determined by the following 
dispersion relation : 

-wk - P  +s12=0. (7) 

In order to search for a travelling wave solution of ~~Kdv-Burgers equation ( I )  
using a computer algebra system such as Marhemarim, we construct a transformation 

U =~[~Oglf)lu+P[~oglf)1, .  ( 8 )  

The transformation (8) reduces (1) to the following homogeneous equation in f ( x , y ,  t ) :  

[-72nsf;fi - 72nfJ;+ (72/2S)m?f: + (432/5)mn& + 216n2f*f, 

-288n?fyxu]+ [ - ( 2 4 / 5 ) m s f ~ f ~ - ( 2 4 / S ) m f J ~ + ~ n s f s f ~ +  72nfJx, 

+96nsfv fJx,,+ 24ns-& + 72nf; fJxx - (432//5)mnfJ::, - 7 2 i ~ y : ~  

-(432/5)mnf?xu+ 216n?f%Jf+ [( W ) m s f S f x +  W / s ) m f X f x t  

+(24/s)msffq - 2 4 n ~ f ; ~  -24nsfJxSy+ (12/5)mff=- 12nsfsfn 

-36nf,S,,- (36/25)m%- 36nff,, 

-24nsffxq- 1W&- (96/25)m?fJxxx 
+ ( 2 8 8 / S ) m n f ~ ~ m + 2 4 n ~ ~ ~ +  (216/S)mnfJux- 36n%J, 

- 7 2 n z f f , , 1 f 2  + [- (1 2/S)msLm - ( 12/’5)fnfxx, + 12nsl;, + 1 2nfmXr 

+( 12/5)in%~.~ - (72/s)mnfuxxx + ~?,i&~~~,lf~ = 0 (9) 

where constants q , p  outside the derivative in (8) are adjusted to suit the constant 
outside the nonlinear term in (1) such that terms of degree 5 and 6 in the derivatives 
off vanish; in our case q= 12n,p=-12m/5. 

Substituting the expression (5) into (9), we 6nd that the expression (5 )  is really the 
solution of (9), provided that k, I and w satisfy the following equations: 

-2S12ns+25knw+k%?+ 30klmn-25k4n2=0 ( loa) 

-lZnls+kmw+30k12ns-30k‘nw-36kdmn+30ksn2=0 ( 1 Ob) 

I5pms- 15kmw- 175kpns+ 1 7 5 k b -  11k)m2+210k4mn- 175ksn2=0 (104 

(Skn - m)(-kw f 1’s- k h +  k4n) = 0 (104 
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Solving (10) using Mathematica, yields 

k= +m/(5n) )v= [-6m4i 625l2n’s]/( 125mn’) (11) 
and I is an arbitrary constant. 

(1) as follows: 
From (5 ) ,  (8) and (1 I), we obtain the exact solutions of the ZD KdV-Burgers equation 

UKdY.B(X, y, t) = (3m2/25n)[sech’(z/2) 2 tanh(z/2) 7 21 (12) 
where 

z=~(m/5n)x+ly-(-6m4f625E2n’s) t / (125mn2) +zo (13) 
and 1 is an arbitrary constant. 

Taking note of the fact that the ZD Burgers equation 

(ut + uux - mxJx + myv = 0 
and the ZD Kdv (KP) equation 

(U, + uu, + bu,,), + sum = 0 

have the following travelling wave solutions, respectively [7,8] : 
u(x; y, t) = -&[tanh(r/2) + 11 
u(x ,  y, t )  = 36#[sech2(r/2)] 

where r = kx+ ly - wt + ro, k, 1, and w satisfy the following dispersion relations, 
respectively : 

kw - I Z S  + alz = 0 

kw - 1’s - bk4= 0 

we can see easily that 

U&, y, t)  = T(6m2/25n)[tanh(z/2) + 11 

UW(X, y ,  t) = =f( 18m2/25n)[sech2(z/2)] 

(u,+uu,- (6m/5)u&+sup,,=0 ( 14) 

(u,+uu,~6nu,,,),+su,=O (15) 

UKdv-dX, Y ,  t)=uB(x, y. t )  7 (1/6)U~dv(X, y. 2). (16) 
The fact given above is an important phenomenon, and the results are summed up as 
follows : 

(i) The 2~Kdv-Burgers equation (1) has travelling wave solutions (12), which 
consist of the shock wave solutions of the 20 Burgers equation (14) and the solitary 
wave solutions of the ZD Kdv equation (15). 

(ii) Computer algebra systems are extremely useful tools, especially when used to 
solve computationally tedious problems. In our application, we used Mathemarica to 
find a class of exact solution of a nonlinear partial differential equation. 

and 

are the solutions of the equations: 

respectively, where z is expressed by (13). Hence we have 
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Appendix 

Below is a Mafhemnrica session used to verify our results. After making an identical 
transformation, solution (12) and (13) can be expressed in the following form 

UI(X, y, t)=-12m2/(25n)/(l +exp(-2))’ (Ala) 

z = (m/5n)x + ly - (-6m4+ 6251n3s)t/( 125mn’) +ZO ( A W  

u2(x, y, t)=12&/(25n)[l- l / ( l + e x p ( ~ ) ) ~ ]  (A24 

z=(-m/5n)x+ly- (-6m4-6251n3s)t/(125mn2)+zo. (‘Qb) 

Li Zhibin and Wang Mingliang 

We first dehne two functions ul[x, y, t] and u2[x,y, t] in In[l] and In[2], respectively, 
corresponding to (AI) and (A2), where m, n, k, I ,  w and s are all constants. We then 
ask Mathemaficu to evaluate and differentiate the expression ul[x,y, t] and u2[x, y, t] 
in the command line In[3] and In[4]. It takes some 1 CPU minute on a Donghai 386 to 
simplify the results. Taking k= i m / ( 5 n ) ,  and w =  ( - 6 ~ ~  i 625E2n3s)/(125mn2). the final 
results are as expected, namely 0. 

1n[l1:= ul [x, y, t] := - 12mA2/(25n)/(i +exp[-(k*x + ~ * y -  w*  t + a ) ] )  -2 
In[Z] :=uZ[x, y, t]:= I2inA2/(Z5n) * (1 - 1/( 1 + exp[k * x +  [* y - w *  f + 201) -2) 
In[3]:=zbl=D[D[ul[x, J: t], t] 

+ u l [ x ,  y, tl*D[ul[x, y, [I, xl-m*D[ul[x, Y, tl. {x, 2)l 
+n*D[ul[x, Y ,  tl. {x, 311, x 1 + s * D W [ x 3 ~ ,  11, b, 211 

Time=0.33s 
In[4]:=zb2=D[D[u2[x, y, t], t] 

+u2[x, Y. il*D[u2[x, y, [I, x1-m*D[u2[x3 Y, tl, {x, 2}1 
+ n * W % ,  y, 11. {x, 3}1, xl+s*D[~2[x3 Y. fl,  {Y, 2)1 

Time = 0.32s 

Tme=59.81s 

Time = 56.79s 

In[5] := res1 = Simplify[zbl] 

In[6] := res2= Simplify[zb2] 

In[7] := Simplify[resl/. ( k  - >m/(5n), w -  >(-6m^4 

Out[7] := 0 
+6251^2*nA3 *s)/(125m*nA2)}] 

Time= 7.03s 
In[8] := Smplify[res2/.{k - >-m/(5n), w - >(-6m-4 

Out[8] := 0 
Time=7.14s 

-6251-2 * n-3 *s)/( 125m *n-2)}] 
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